BloombergGPT: *A Large Language Model for Finance*

9th Annual Machine Learning in Finance Workshop May 19, 2023

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhanjan Kambadur, David Rosenberg, Gideon Mann

TechAtBloomberg.com

© 2023 Bloomberg Finance L.P. All rights reserved.

BloombergGPT is a 50 billion parameter language model trained on ~700 billion tokens, half of which are from financial domain.

Two Research Questions

- 01 What are the optimal choices for building a Large Language Model?
- ⁰² What is the impact of domain specific data on the end model's performance?

Agenda

- 01 What is Language Modeling?
- 02 Decoder-Only Transformer Language Model
- ⁰³ Hyper-parameters, Quantization, and Other Configurations
- 04 General domain and In-domain Evaluations
- **Product Previews and a Short Discussion**

Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

01 Language Modeling

Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

What is Language Modeling?

Given a context of words, produce the probability distribution of the next word.

The model is trained to accomplish this task on lots of text.

To use it to generate text, you can repeatedly send in the context \rightarrow calculate next-word probabilities \rightarrow sample one from the distribution.

Scale has driven the acceleration of AI developments

GPT-3 2020
175B parameters
1024 x A100 GPUs
\$3M

State of the art in 2000: Multiple separate models

Library of Congress Has Books for Everyone

(WASHINGTON, D.C., 1964) - It was 150 years ago this year that our nation's biggest library burned to the ground. Copies of all the written books of the time were kept in the Library of Congress. But they were destroyed by fire in 1814 during a war with the British.

That fire didn't stop book lovers. The next year, they began to rebuild the library. By giving it 6,457 of his books, Thomas Jefferson helped get it started.

The first libraries in the United States could be used by members only. But the Library of Congress was built for all the people. From the start, it was our national library.

Today, the Library of Congress is one of the largest libraries in the world. People can find a copy of just about every book and magazine printed.

Libraries have been with us since people first learned to write. One of the oldest to be found dates back to about 800 years B.C. The books were written on tablets made from clay. The people who took care of the books were called "men of the written tablets."

- 1. Who gave books to the new library?
- 2. What is the name of our national library?
- 3. When did this library burn down?
- 4. Where can this library be found?
- 5. Why were some early people called "men of the written tablets"?

Figure 1: Sample Remedia[™] Reading Comprehension Story and Questions Part of speech tagging

Statistical Tagging

Named Entity Extractor

Question Type Detection

Paraphrase Resolution

Answer Extraction

Thomas Jefferson

(purple is system output)

Library of Congress Has Books for Everyone

(WASHINGTON, D.C., 1964) - It was 150 years ago this year that our nation's biggest library burned to the ground. Copies of all the written books of the time were kept in the Library of Congress. But they were destroyed by fire in 1814 during a war with the British.

That fire didn't stop book lovers. The next year, they began to rebuild the library. By giving it 6,457 of his books, Thomas Jefferson helped get it started.

The first libraries in the United States could be used by members only. But the Library of Congress was built for all the people. From the start, it was our national library.

Today, the Library of Congress is one of the largest libraries in the world. People can find a copy of just about every book and magazine printed.

Libraries have been with us since people first learned to write. One of the oldest to be found dates back to about 800 years B.C. The books were written on tablets made from clay. The people who took care of the books were called "men of the written tablets."

1. Who gave books to the new library?

MASK

GPT-3 2020

"Large Language Model"

The library was built for _____.
 One of the oldest libraries was found

4. The people who took care of the books were called _____.

Answers: 1. Thomas Jefferson 2. all the people 3. 800 years B.C. 4. "men of the written tablets."

LLMs are...

- **General**: A single model can handle many tasks without additional training
- **Broad**: It has as much (or more?) "knowledge" of the world as a human adult
- **Accessible:** You interact with the model directly in language, not in code

Some tasks where LLMs are effective:

- Summarization
- Information Extraction: Reading Comprehension, Question Answering
- Document Understanding: Sentiment Analysis, Insight Extraction
- Text Generation: poetry writing, style transfer
- Code Generation: Copilot (Auto-complete), Toolformer

Code Generation is significant, because it means we can bridge the gap between language and executable actions

O2 Transformer Language Models

TechAtBloomberg.com

Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

Transformer Blocks

Two main components: an *attention* layer and a *feed-forward* layer

The input and output dimension of each Transformer block are the same.

After each of its two major subcomponents, the inputs (residuals) are added back.

Due to this, every Transformer block has consistent embedding dimensions.

The Feed-Forward layer is a standard two-layer dense perceptron with a non-linear activation between the two layers (e.g., ReLU). It refines the representation for the current position.

The Attention layer integrates representations across previous positions.

At each word, the Transformer computes a separate representation.

The activations proceed layer by layer and get progressively refined by looking at representations of the other words.

Decoder-Only Transformer Language Model

Input word sequence

Decoder-Only Transformer Language Model

There is a lot of experimentation within this base architecture:

- 1. Location of Layer Norms (e.g., an extra layer norm after the embedding layer)
- 2. Exact Activation Function (e.g., SwiGLU vs. ReLU)
- 3. Positional embeddings (e.g., ALiBi vs. rotational encoding)

Even with the overall model architecture set, there are lots of knobs to tune

- **Model Size & Shape**: What shape should each sub-component have?
- **Dataset size**: For a given model size, what is the optimal amount of data?
- Low-level operator Implementation: How do you build efficient computation for each operator?
- **Hardware:** What is the most efficient hardware (and network) configuration needed for training?
- **Distributed Optimizer**: If the model cannot fit on one machine, how do you efficiently pass parameters and gradients around during training?
- **Hyper-parameters**: How should you set learning rate?
- **Numerical Precision**: What is the necessary precision for each of the parameters and gradients?
- **Tokenization**: How big should the vocabulary size be? Do you want multi-word tokens?
- Dataset composition: Does in-domain data matter?

03 Training BloombergGPT

Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

The **Chinchilla** scaling law proposes a function for the optimal **model** and **data** size **given a set computational budget**.

More recently, **LLaMA** suggested much longer training times to account for **inference-efficient models** (multiple times the Chinchilla estimates).

Model Parameters*

	Embedding Dimensions	Transformer Blocks	Total Parameters*	Total Data Size (in tokens)
GPT-3	12,288	96	175B	300B
GPT-NeoX	6,144	44	20B	472B
OPT-66	9,216	64	66B	300B
BLOOM	14,336	70	176B	366B
BloombergGPT	7,680	70	50B	569B

https://arxiv.org/abs/2006.12467

Tokenization

- GPT-2 Tokenizer is most often used
 - Numbers are not treated specially
 - No multi-word tokens
- BloombergGPT Tokenizer
 - A Unigram Tokenizer trained on The Pile
 - Byte-level representation of numbers and out-of-vocabulary words
 - Multi-word tokens allowed
 - Large vocabulary size 131,072

Data compression rate with different vocabulary sizes.

Hardware

We used 64 of the largest available instance type, p4d.24xlarge, in our training cluster.

Each instance has the following characteristics:

- 8 NVIDIA 40GB A100 GPU
- Intra-node connection: 600 GB/s Bidirectional NVIDIA NVSwitch
- Inter-node connection: 400 GB/s NVIDIA GPUDirect using AWS Elastic Fabric Adapter (EFA)
- 512 GPUs: 64 instances x 8 A100 (40G) GPUs

Maximum possible performance for these GPUs is 350 TFLOPS. We observed 105 TFLOPS.

Dataset selection

Our training dataset consists of roughly equal parts public and private data:

- Public data:
 - The Pile (Gao et al., 2020) 22 diverse domains
 - C4 (Raffel et al., 2019) cleaner Common Crawl
 - Wikipedia from July 2022
- Private data:
 - Web content
 - News wires and transcripts
 - SEC Edgar filings
 - Press Releases

	Source	Docs	Chrs	Toks	Т %
C4	AI2	$348,\!320,\!475$	$768,\!255,\!491,\!381$	$138,\!086,\!167,\!809$	18.31%
Pile-CC	The Pile	52,546,936	231,235,621,898	42,672,626,661	5.66%
Github		14,283,906	76,617,726,302	22,659,758,045	3.00%
Books3		192,699	106,446,541,865	$21,\!438,\!473,\!989$	2.84%
PubMed Central		2,943,136	94,714,503,236	21,005,999,316	2.78%
ArXiv		1,236,620	59,133,375,329	$16,\!625,\!600,\!597$	2.20%
OpenWebText2		$16,\!840,\!752$	64,832,640,876	12,795,986,466	1.70%
FreeLaw		$3,\!490,\!740$	$53,\!692,\!541,\!631$	10,758,608,214	1.43%
StackExchange		$15,\!382,\!809$	$33,\!864,\!315,\!793$	$8,\!124,\!663,\!078$	1.08%
DM Mathematics		999,241	8,187,061,287	4,261,055,494	0.56%
Wikipedia (en)		$5,\!895,\!152$	$17,\!615,\!739,\!611$	3,788,325,415	0.50%
USPTO Backgrounds		5,172,924	$22,\!445,\!179,\!469$	$3,\!633,\!864,\!012$	0.48%
PubMed Abstracts		$15,\!272,\!654$	$20,\!351,\!195,\!170$	3,529,383,787	0.47%
OpenSubtitles		381,947	$11,\!861,\!292,\!733$	$2,\!421,\!421,\!968$	0.32%
Gutenberg (PG-19)		28,017	11,188,611,518	2,285,880,943	0.30%
Ubuntu IRC		10,440	5,629,479,865	1,779,202,702	0.24%
EuroParl		68,441	$4,\!452,\!319,\!881$	$1,\!520,\!272,\!604$	0.20%
YoutubeSubtitles		$168,\!673$	3,344,937,386	$1,\!315,\!803,\!721$	0.17%
BookCorpus2		17,588	6,514,318,278	$1,\!216,\!136,\!584$	0.16%
HackerNews		818,301	4,099,188,167	$841,\!584,\!504$	0.11%
PhilPapers		31,003	2,319,853,994	551, 132, 837	0.07%
NIH ExPorter		921,126	1,994,651,615	299,916,729	0.04%
Enron Emails		$240,\!321$	$452,\!269,\!259$	$115,\!903,\!976$	0.02%
Wikipedia $(7/1/22)$	Wikimedia	22,181,027	72,564,685,645	23,714,414,820	3.14%
PUBLIC SUM		507,444,928	$1,\!681,\!813,\!542,\!189$	$345,\!442,\!184,\!271$	45.80%

	Docs	Chrs	Toks	Т %
2007 / [03-]	$16,\!436,\!840$	29,892,828,920	$6,\!399,\!980,\!987$	0.85%
2008 / [-]	36,084,362	76,731,180,098	15,740,625,084	2.09%
2009 / [-]	$35,\!456,\!377$	79,738,265,930	$16,\!394,\!536,\!545$	2.17%
2010 / [-]	$42,\!183,\!775$	$92,\!346,\!179,\!177$	$18,\!675,\!431,\!798$	2.48%
2011 / [-]	50,778,508	$112,\!292,\!794,\!690$	$22,\!832,\!892,\!156$	3.03%
2012 / [-]	$53,\!982,\!853$	$118,\!192,\!151,\!898$	$24,\!196,\!699,\!764$	3.21%
2013 / [-]	$69,\!497,\!470$	$120,\!898,\!447,\!464$	24,739,450,562	3.28%
2014 / [-]	$92,\!318,\!762$	$127,\!684,\!784,\!155$	$26,\!395,\!827,\!703$	3.50%
2015 / [-]	$126,\!268,\!586$	147,068,982,286	30,267,511,982	4.01%
2016 / [-]	$157,\!293,\!515$	$157,\!404,\!864,\!986$	32,096,254,602	4.26%
2017 / [-]	$179,\!982,\!740$	$159,\!286,\!323,\!161$	$32,\!699,\!310,\!772$	4.33%
2018 / [-]	$174,\!885,\!371$	$165,\!130,\!500,\!372$	33,893,888,805	4.49%
2019 / [-]	174,738,844	$162,\!727,\!834,\!110$	$33,\!354,\!932,\!194$	4.42%
2020 / [-]	213,360,286	182,760,019,862	36,868,616,780	4.89%
2021 / [-]	$231,\!603,\!253$	$176,\!668,\!487,\!134$	36,229,023,280	4.80%
2022 / [-06]	$103,\!095,\!963$	87,897,291,247	$18,\!085,\!989,\!414$	2.40%
PRIVATE SUM	1,757,967,505	$1,\!996,\!720,\!935,\!490$	$408,\!870,\!972,\!428$	54.20%

BloombergGPT 50b (v0 + v1)

- V0 Problem:
 - Training loss plateaued after about 10k steps
 - No improvements to dev loss after step ~20k
- Changes:
 - Remove temporal curriculum (shuffle parts)
- V1 Problem:
 - After ~12k steps, gradient norm started increasing
 - Occasional dev loss jumps

• Attempts to fix v1:

- v1.1 Restart from step 10.8k, fully shuffle remaining data, reduce LR (8e-5)
- v1.2: Even smaller LR (6e-5), smaller grad_clip (0.3) without restart
- v1.3: v1.1 + fp32 in LM head reduce LR
- v1.4: v1.3 + v1.2 + smaller roll back

At this point we believed v1 was unsalvageable...

16000

step

18000

20000

10000

12000

14000

BloombergGPT 50b (v2)

Many stability-inducing hyperparameter changes and bug fixes:

- v1.4: fp32 in LM head + max Ir = 6e-5 + grad clip = 0.3 + fully shuffle data
- different seed (e.g. different initialization & data ordering)
- LayerNorm after embedding
- Longer learning rate warm up
- Remove Layer Norm weight decay
- Use megatron init rescaling
- query_key_layer_scaling
- two stage batch size warm up (1024->2048)

04 Evaluation

Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

Two Categories of Evaluation

General Topic Evaluation

- BIG-Bench Hard
- Massive Multitask Language Understanding (MMLU)
- Reading Comprehension
- Linguistic Scenarios

Financial Domain Evaluation

- FPB, FiQA, Headline, ConvFinQA
- Sentiment, NER, NED+NED

The Different Types of Evaluations

Training monitoring

This is expensive to run!

- Dev loss on (1) i.i.d. Set, (2) non i.i.d. Set

- small set of high-coverage sets

Post-Training Eval

You want something indicative!

- General Public: Big bench, Knowledge, Reading Comprehension, Linguistic Tasks
- In-Domain Public: QA, NER, sentiment;
- In-Domain Private: Sentiment, NER, NED

Eval for particular applications

This is what really matters and post-training eval should correlate with positive results here.

Work with product management, develop UX/UI, Teach people how to use the model

BIG-Bench Hard

BIG-Bench covers 214 NLP tasks to benchmark LLMs

BIG-Bench Hard is a curated subset of 23 challenging tasks

BIG-bench Hard Task	BLOOMBERGGPT	GPT-NeoX	$\mathrm{OPT}_{66\mathrm{B}}$	$\mathrm{BLOOM}_{176\mathrm{B}}$	PaLM _{540B}
Boolean Expressions ^{λ}	62.40	71.20	48.40	69.20	83.2
Causal Judgement	49.73	52.41	51.87	51.87	61.0
Date Understanding	54.80	45.60	49.60	50.00	53.6
Disambiguation QA	34.00	40.80	40.40	40.40	60.8
Dyck Languages ^{λ}	15.60	26.00	14.80	42.00	28.4
Formal Fallacies	50.80	52.80	54.00	52.80	53.6
Geometric Shapes ^{λ}	15.20	8.00	11.60	22.40	37.6
Hyperbaton	92.00	92.00	91.60	92.00	70.8
Logical Deduction ^{λ} (avg)	34.53	30.93	31.87	34.00	60.4
Movie Recommendation	90.40	86.40	91.20	91.20	87.2
Multi-Step Arithmetic ^{λ} [Two]	1.20	0.40	0.40	0.00	1.6
$Navigate^{\lambda}$	42.00	45.20	42.00	50.00	62.4
Object Counting ^{λ}	33.20	21.20	26.00	36.80	51.2
Penguins in a Table	37.67	33.56	28.08	40.41	44.5
Reasoning about Colored Objects	34.80	26.00	31.20	36.80	38.0
Ruin Names	56.00	54.00	52.80	54.80	76.0
Salient Translation Error Detection	20.00	20.40	16.40	23.60	48.8
Snarks	69.66	62.36	69.66	72.47	78.1
Sports Understanding	62.80	53.20	54.40	53.20	80.4
Temporal Sequences ^{λ}	29.20	21.20	23.60	36.80	39.6
Tracking Shuffled Objects ^{λ} (avg)	25.33	24.53	24.00	23.47	19.6
Web of $Lies^{\lambda}$	49.20	52.40	54.00	51.20	51.2
Word Sorting ^{λ}	4.80	5.20	2.40	7.60	32.0
NLP Task (avg)	54.39	51.63	52.60	54.96	62.7
Algorithmic Task ^{λ} (avg)	28.42	27.84	25.37	33.95	40.9
All Tasks (avg)	41.97	40.25	39.58	44.91	52.3
All Tasks (WR)	0.57	0.45	0.39	0.75	1.00

Massive Multitask Language Understanding

Abstract Algebra Anatomy Astronomy **Business Ethics** Clinical Knowledge College Biology College Chemistry College Computer Science **College Mathematics College** Medicine **College Physics Computer Security Conceptual Physics Econometrics Electrical Engineering Elementary Mathematics** Formal Logic **Global Facts** High School Biology High School Chemistry High School Computer Science High School European History High School Geography High School Gov't and Politics High School Macroeconomics **High School Mathematics** High School Microeconomics **High School Physics** High School Psychology

Groups, rings, fields, vector spaces, ... Central nervous system, circulatory system, ... Solar system, galaxies, asteroids, ... Corporate responsibility, stakeholders, regulation, ... Spot diagnosis, joints, abdominal examination, ... Cellular structure, molecular biology, ecology, ... Analytical, organic, inorganic, physical, ... Algorithms, systems, graphs, recursion, ... Differential equations, real analysis, combinatorics, ... Introductory biochemistry, sociology, reasoning, ... Electromagnetism, thermodynamics, special relativity, ... Cryptography, malware, side channels, fuzzing, ... Newton's laws, rotational motion, gravity, sound, ... Volatility, long-run relationships, forecasting, ... Circuits, power systems, electrical drives, ... Word problems, multiplication, remainders, rounding, ... Propositions, predicate logic, first-order logic, ... Extreme poverty, literacy rates, life expectancy, ... Natural selection, heredity, cell cycle, Krebs cycle, ... Chemical reactions, ions, acids and bases, ... Arrays, conditionals, iteration, inheritance, ... Renaissance, reformation, industrialization, ... Population migration, rural land-use, urban processes, ... Branches of government, civil liberties, political ideologies, Economic indicators, national income, international trade, ... Pre-algebra, algebra, trigonometry, calculus, ... Supply and demand, imperfect competition, market failure, . Kinematics, energy, torque, fluid pressure, ... Behavior, personality, emotions, learning, ...

High School Statistics High School US History High School World History Human Aging Human Sexuality International Law Jurisprudence Logical Fallacies Machine Learning Management Marketing Medical Genetics Miscellaneous Moral Disputes Moral Scenarios Nutrition Philosophy Prehistory **Professional Accounting** Professional Law Professional Medicine Professional Psychology **Public Relations** Security Studies Sociology **US Foreign Policy** Virology World Religions

Random variables, sampling distributions, chi-square tests, ... Civil War, the Great Depression, The Great Society, ... Ottoman empire, economic imperialism, World War I, ... Senescence, dementia, longevity, personality changes, ... Pregnancy, sexual differentiation, sexual orientation, ... Human rights, sovereignty, law of the sea, use of force, ... Natural law, classical legal positivism, legal realism, ... No true Scotsman, base rate fallacy, composition fallacy, ... SVMs, VC dimension, deep learning architectures, ... Organizing, communication, organizational structure, ... Segmentation, pricing, market research, ... Genes and cancer, common chromosome disorders, ... Agriculture, Fermi estimation, pop culture, ... Freedom of speech, addiction, the death penalty, ... Detecting physical violence, stealing, externalities, ... Metabolism, water-soluble vitamins, diabetes, ... Skepticism, phronesis, skepticism, Singer's Drowning Child, ... Neanderthals, Mesoamerica, extinction, stone tools, ... Auditing, reporting, regulation, valuation, ... Torts, criminal law, contracts, property, evidence, ... Diagnosis, pharmacotherapy, disease prevention, ... Diagnosis, biology and behavior, lifespan development, ... Media theory, crisis management, intelligence gathering, ... Environmental security, terrorism, weapons of mass destruction, ... Socialization, cities and community, inequality and wealth, ... Soft power, Cold War foreign policy, isolationism, ... Epidemiology, coronaviruses, retroviruses, herpesviruses, ... Judaism, Christianity, Islam, Buddhism, Jainism, ...

MMLU Results

1.0

.

Model	BloombergGPT	GPT-NeoX	$\mathrm{OPT}_{66\mathrm{B}}$	$\mathrm{BLOOM}_{176\mathrm{B}}$	GPT-3
Humanities	36.26	32.75	33.28	34.05	40.8
STEM	35.12	33.43	30.72	36.75	36.7
Social Sciences	40.04	36.63	38.32	41.50	50.4
Other	46.36	42.29	42.63	46.48	48.8
Average	39.18	35.95	35.99	39.13	43.9

Financial Domain: Public Datasets

	BLOOMBERGGPT	GPT-NeoX	$\mathrm{OPT}_{66\mathrm{B}}$	$\mathrm{BLOOM}_{176\mathrm{B}}$
ConvFinQA	43.41	30.06	27.88	36.31
FiQA SA	75.07	50.59	51.60	53.12
FPB	51.07	44.64	48.67	50.25
Headline	82.20	73.22	79.41	76.51
NER	60.82	60.98	57.49	55.56
All Tasks (avg)	62.51	51.90	53.01	54.35
All Tasks (WR)	0.93	0.27	0.33	0.47

Financial Domain: Bloomberg Internal Datasets

	BloombergGPT	GPT-NeoX	$\mathrm{OPT}_{66\mathrm{B}}$	$\mathrm{BLOOM}_{176\mathrm{B}}$
Equity News	79.63	14.17	20.98	19.96
Equity Social Media	72.40	66.48	71.36	68.04
Equity Transcript	65.06	25.08	37.58	34.82
ES News	46.12	26.99	31.44	28.07
Country News	49.14	13.45	17.41	16.06
All Tasks (avg)	62.47	29.23	35.76	33.39
All Tasks (WR)	1.00	0.00	0.67	0.33

	BLOOMBERGGPT	GPT-NeoX	$\mathrm{OPT}_{66\mathrm{B}}$	$\mathrm{BLOOM}_{176\mathrm{B}}$
NER	-			
BFW	72.04	71.66	72.53	76.87
BN	57.31	52.83	46.87	59.61
Filings	58.84	59.26	59.01	64.88
Headlines	53.61	47.70	46.21	52.17
Premium	60.49	59.39	57.56	61.61
Transcripts	75.50	70.62	72.53	77.80
Social Media	60.60	56.80	51.93	60.88
All Tasks (avg)	62.63	59.75	58.09	64.83
All Tasks (WR)	0.57	0.29	0.19	0.95
NER+NED				
BFW	55.29	34.92	36.73	39.36
BN	60.09	44.71	54.60	49.85
Filings	66.67	31.70	65.63	42.93
Headlines	67.17	36.46	56.46	42.93
Premium	64.11	40.84	57.06	42.11
Transcripts	73.15	23.65	70.44	34.87
Social Media	67.34	62.57	70.57	65.94
All Tasks (avg)	64.83	39.26	58.79	45.43
All Tasks (WR)	0.95	0.00	0.67	0.38

05 Discussion

Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

Text-to-BQL

Input: Get me the last price and market cap for Apple
Output: get(px_last,cur_mkt_cap) for(['AAPL US Equity'])

Input: Tesla price
Output: get(px_last) for(['TSLA US Equity'])

Input: Get the yield and spread for EC527035 Corp and AL580550 Corp
Output: get(yield,spread) for(['EC527035 Corp','AL580550 Corp'])

Input: apple and ibm market cap and eps
Output: get(cur_mkt_cap,is_eps) for(['AAPL US Equity','IBM US Equity'])

Input: industry subgroup of ibm apple microsoft google
Output: get(industry_subgroup()) for(['AAPL US Equity','IBM US Equity',
'MSFT US Equity','GOOGL US Equity'])

Language Interface for the Terminal

"Market Cap of AAPL vs. MSFT"

"Start from 2010"

"Add Number of Employees"

Key Takeaways

- 01 Even though model stability and efficiency are challenging, it is possible for a (relatively) small team to build a LLM around the same quality as GPT-3 (given enough compute resources)
- 02 Training on in-domain data even at dataset sizes of hundreds of billions of tokens, yields stronger in-domain performance while retaining general performance

Open Questions

- **01** Sample efficiency of training
- **02** General Pre-Training, then Fine-Tuning vs. Joint Pre-Training
- **03** Post-training Conditioning

Thank you!

www.TechAtBloomberg.com/datascience

Bloom

lberg

We are hiring: bloomberg.com/engineering

TechAtBloomberg.com

© 2023 Bloomberg Finance L.P. All rights reserved